
SGML Application Development: Tradeo�s and Choices�y

Joshua Lubell and Lisa Phillips

Manufacturing Systems Integration Division

National Institute of Standards and Technology

Building 220, Room A127

Gaithersburg MD 20899 USA

Email: apde@cme.nist.gov

This paper appeared in the proceedings of SGML'96, Boston MA

November 27, 1996

Abstract

Developing SGML applications involves making choices driven by end user

requirements and by the availability and functionality of third party SGML parsers,

authoring tools, search engines, browsers, and data converters. Capabilities of HTML

and the World Wide Web should factor into these decisions as well if users are

geographically dispersed or have diverse computing platforms. SGML application

developers typically build some or all of the following components: a DTD; legacy

data conversion tools; a DTD-tailored authoring environment; a document repository;

browsing and searching interfaces; and tools for producing formatted output. For each

component, we discuss design and implementation alternatives, the approach we

decided to use in building our SGML environment for authoring and accessing STEP

product data exchange standards, and our rationale for choosing that approach.

Keywords : SGML; STEP; DTD; data conversion; authoring; search engine;

formatting; Tcl; HTML

�Trade names and company products are mentioned in the text in order to adequately specify exper-
imental procedures and equipment used. In no case does this identi�cation imply recommendations or
endorsements by the National Institute of Standards and Technology, nor does it imply that the products
are necessarily the best available for the purpose.

yThis work is funded by the National Institute of Standards and Technology's Systems Integration for
Manufacturing Applications (SIMA) program, a part of the US government's High Performance Computing
and Communications initiative.

1 Introduction

Developing software applications using the Standard Generalized Markup Language
(SGML)[GOLD] involves making many design and implementation choices. These choices
are driven partly by end user requirements and partly by the availability and functionality
of third party SGML parsers, authoring tools, search engines, browsers, and data
converters. Capabilities of Hypertext Markup Language (HTML) and the World Wide
Web should factor into these decisions as well if the application's users are geographically
distributed or have diverse computing platforms. Since choices made early in the
development e�ort often have implications throughout the life of the application, it is
important for application developers to be well-informed about their users' requirements
and also about available software tools and technologies.

The National Institute of Standards and Technology is building an SGML environment for
creating, storing, accessing, and publishing documents related to international
standards[PHIL94]. This environment is part of an integrated software tool suite for
accelerating the development and deployment of international product data exchange
standards known collectively as \STEP" (the Standard for the Exchange of Product
Model Data)[STEP1]. When complete, our environment will include document type
de�nitions (DTDs) developed for STEP, tools to convert existing standards into SGML
using our DTDs, a STEP-tailored authoring environment, and a tool for converting
SGML-tagged documents into PostScript conforming to STEP's documentation
guidelines[WELL]. The environment also contains a repository of SGML and non-SGML
STEP documents indexed for e�cient retrieval and accessible through the World Wide
Web. Some portions of the SGML environment are already in place and are being used by
developers of STEP standards.

The life cycle of a STEP document begins with the document's collaboratory
development1 and culminates in its being submitted to the International Organization for
Standardization (ISO) for publication and added to the indexed repository for access by
other standards developers. The SGML environment for STEP supports this entire life
cycle and, therefore, makes a good case study for SGML application development. STEP
(as well as standards development in general) is a good place to apply SGML for the
following reasons:

� Standards function as \legal" documents and therefore must have a precise
structure, including \boilerplate" text. SGML is useful in a standards development
environment for rigorously de�ning and enforcing document structure.

� International standards documentation tends to have a long lifetime, and the

1Collaboratory development is a team e�ort, accomplished using a \virtual" research center where de-
velopers can communicate with colleagues, share data and resources, and obtain digital information from
repositories, without regard to geographical location[KOUZ].

2

standardization process discourages frequent revisions to documents. Therefore, the
initial e�ort required to represent standards in SGML has a high payo�.

� STEP de�nes an extensible architecture for sharing product model data. SGML
provides a way to capture the semantics of this architecture.

� STEP's creators and implementors are geographically dispersed and work on a wide
variety of computer systems. SGML provides a platform-neutral way to represent
STEP documents such that their contents are accessible to anyone in the STEP
community.

The rest of this paper discusses the tradeo�s and choices inherent in building an SGML
environment, using our SGML environment for STEP as an example implementation. We
begin by describing some general SGML application development concepts. Then we
discuss the various design and implementation alternatives available for each component
in an SGML environment, the approach we choose for our SGML environment, and our
rationale for choosing that approach.

2 General Concepts

An SGML environment in its most general form consists of a collection of application
components, each of which interacts with other application components and/or with an
SGML document repository. The SGML environment may serve users who are producers
or consumers of data, or both. Data producers and data consumers have di�erent, and
sometimes contradictory, requirements. Thus, whether an SGML environment's
requirements are producer-driven or consumer-driven has a large e�ect on the
environment's design, as we will see in Section 3.

Figure 1 shows the high level architecture of a generalized SGML environment. An SGML
environment may contain up to �ve modules, depending on how much of the document
life cycle is supported. These �ve modules are:

� An authoring environment for humans to create SGML documents.

� A formatter for converting SGML data into a human-readable form for hard copy or
electronic delivery. Formatted output is useful both as an end product and as a
means for providing feedback during the authoring process.

� A document repository for storing SGML data.

� A data access services module for handling requests for data from the repository. If
the request is for a portion of an SGML document, the result is returned to the user
by way of the formatter.

3

Legacy
Data

Document
Repository

FormatterEnvironment
Authoring

Data Access
Services

Conversion
Methodology

Data Producers Data Consumers

Figure 1: Generalized architecture of an SGML environment.

� A conversion methodology module to automate as much as is feasible the conversion
of legacy data into SGML.

One very important component of an SGML environment not shown in Figure 1 is the
DTD. This is because DTDs are involved in nearly all the modules of an SGML
environment. As Figure 2 shows, SGML application components often act on a document
instance by combining it with a DTD and an SGML declaration2 to form a valid SGML
document, feeding the document through an SGML parser, and performing some
application-speci�c tasks on the parser output. The SGML parser output is a
representation of the document's Element Structure Information Set (ESIS)3, which
describes the data as it is structured according to the DTD, but without any description
of the document instance's actual markup. The ESIS is useful for SGML processing tasks
that can be performed without any knowledge of the original markup. SGML application
components performing these kinds of tasks are known as structure-controlled . SGML
application components that need to know the actual document markup are known as
markup-sensitive. All of the SGML environment modules shown in Figure 1 are
structure-controlled, except for the authoring environment which is markup-sensitive.

An acknowledged weakness of SGML is that there is no analog to ESIS for
markup-sensitive application components. As a result, markup-sensitive application
components' behavior is less standardized than that of structure-controlled application
components. However, the HyTime Technical Corrigendum4[TC] introduces property sets

2The SGML declaration provides information about the dialect of SGML being used such as the character
set, delimiter characters, identi�er lengths, etc.[TEI]

3See Attachment 1 of Appendix B of [GOLD].
4Although the HyTime Technical Corrigendum's primary purpose is to correct the HyTime[HYTIME]

standard, it also extends the facilities of SGML.

4

Parser Application-specific
Task

Document Instance

SGML Declaration

DTD

SGML Document

ESISinput output

Figure 2: Typical SGML processing model.

and groves as a way for application developers to control the behavior of SGML parsers to
a greater degree than was previously possible5, which will result in more standardized
behavior for markup-sensitive SGML application components.

3 Application Components in an SGML Environment

SGML implementors must typically select a DTD and/or build some or all of the
application components discussed in Section 2. This section discusses the design issues
involved for each of these tasks and describes the approach used in the SGML
environment for STEP.

3.1 DTD

The DTD is arguably the most important piece of any SGML implementation. DTD
design choices a�ect nearly every other application component. Two central issues are
whether to use an existing DTD or write one's own and how complex a DTD to use.
Using an existing DTD has several advantages. The most obvious advantage is that it
saves the e�ort required to write and maintain a DTD. Another advantage of using an
existing DTD is that an application developer can use whatever tools have already been
developed for that DTD. A potential disadvantage of using an existing DTD is that it may
not be application-speci�c enough. An existing DTD may meet some but not all of an
application's requirements, resulting in a partial mismatch between the DTD and the
application.

In order to compensate for such a mismatch, the application developer must either modify
the DTD or hard-code the missing DTD structure into the application. Either of these

5An in-depth discussion of property sets and groves is beyond the scope of this document. The reader is
encouraged to consult the HyTime Technical Corrigendum[TC] for additional information.

5

alternatives make the application harder to maintain. Modifying an existing DTD creates
possible con�guration management problems down the road. If the existing DTD's
maintainer makes changes, then the application developer's modi�cations must be kept
consistent. Hard-coding information about the document structure into the application
makes the application less portable across computing platforms, negating some of the
intended bene�ts of using SGML.

Creating a speci�c DTD for an application can be advantageous in that the DTD can be
tailored to �t the application's requirements. However, building one's own DTD increases
the application development and maintenance costs. Also, training and consulting costs
are likely to be increased because, unlike industry-standard DTDs, there are no third party
software tools tailored to custom-built DTDs, and there is no existing group of experts.

3.1.1 The STEP DTDs

STEP documents are developed according to a rigorous methodology[PALMER] dictated
by the STEP community. The SGML environment for STEP must support STEP
standards developers in using this methodology while at the same time ensuring
conformance to STEP's documentation guidelines. However, the complexity of STEP
documents makes it a challenge to meet both of these requirements. STEP's
documentation guidelines dictate the order of presentation and the content allowed so that
the documents properly re
ect the STEP methodology. STEP documents contain front
matter (title page, list of contents, foreword, introduction, scope, references to other
standards, and a glossary of terms) followed by information requirements written in
computer-interpretable modeling languages and annotated with descriptive text. They
also include tables, �gures, notes, and examples. A set of appendices contain additional
items such as documentation for STEP implementors and graphical descriptions of
information requirements.

In order to avoid the pitfalls associated with developing one's own DTD, we initially tried
to �nd an existing DTD to use for representing STEP documents. However, there was no
existing DTD that could adequately represent the STEP architecture so that an
SGML-aware search engine could perform structure-based searches for STEP components.
Also, no existing DTD contained the element structures needed to verify that a document
tagged with that DTD conforms to STEP's documentation guidelines. Therefore, we
decided to develop our own DTDs for STEP. We have created DTDs[PHIL96] for two
document types in STEP: Application Protocols (APs) and Integrated Resources (IRs).
APs are the self-contained, implementable parts of the standard. IRs are the reusable
building blocks of information structures that are shared by the APs. STEP's
documentation guidelines specify the documentation requirements for both of these
document types at �ne levels of granularity.

6

STEP standards have traditionally been produced using very little software support
besides generic tools such as word processors and electronic mail. Therefore, conforming
to the STEP documentation guidelines is typically a time consuming and error-prone
e�ort. As a result, development of STEP standards is too expensive, and errors tend to
slip into initial releases. The goal of the STEP DTDs is to reduce development costs and
increase quality by capturing as many of the documentation requirements as possible in a
standard, reusable, computer-interpretable form. In keeping with common SGML DTD
design principles, explicit formatting requirements are not captured in the STEP DTDs.
However, the DTDs provide an unambiguous representation of all required and optional
content in STEP APs and IRs, the order and frequency with which the elements
corresponding to that document content can occur, and all of the necessary relationships
between the elements. Because of the speci�city of the documentation guidelines in all of
these areas, the DTDs are also highly granular and complex.

The high level of granularity of the STEP DTDs enables us to specify a lot of
application-speci�c behavior in an implementation-independent manner, and also
maximizes our ability to leverage third party SGML software tools. However, it makes the
DTDs hard to maintain and also potentially makes them harder for a STEP part editor to
use with SGML authoring software. Our challenge, therefore, is to create an environment
in which all content and structural requirements for STEP documents is enforced without
making the DTDs prohibitively di�cult to use.

In an initial response to this challenge, we developed two AP DTDs: one for editing STEP
APs from scratch, and the other for publishing existing STEP APs. A �lter can then be
implemented to translate documents written using the AP-editing DTD into documents
conforming to the AP-publishing DTD using an approach similar to the one discussed in
Section 3.66. We were able to use this \two DTD" approach because much of the content
in an AP can be derived from other content in the document or is common to all APs.
Examples include such items as boilerplate text and required cross references. When
editing an AP, the author should only be concerned with providing the minimum amount
of information needed for an application to derive the remaining document content. The
AP-editing DTD, therefore, only represents this minimal subset of the AP. The rest of the
content will then be generated by the �lter according to the AP-publishing DTD, which
represents all of the document content including redundancies. By using separate DTDs
for editing and publishing, we are able to ease the burden on document authors while not
sacri�cing the power of SGML in codifying and enforcing the STEP documentation
guidelines. We also prevent inconsistencies by eliminating the opportunity for authors to
specify redundant information.

The following example illustrates the relationship between the AP-editing and

6We have not yet implemented the �lter, although we plan to do so in the near future. The STEP AP
developers currently using our SGML environment have existing documentation for most of their AP in a
word processor format and, therefore, chose to work directly with the AP-publishing DTD.

7

AP-publishing DTDs. Consider the DTD fragment from the publishing DTD modeling
the \Units of Functionality" sub-clause of an AP7:

<!ELEMENT UoFs.SubC - - (UoF.SubC.Intro.Text,

UoFs.List,

UoF.CL3+)>

<!ELEMENT UoFs.List - - (UoF.List.Item+) >

<!ATTLIST UoFs.List Ordered.List (Y|N) "N" >

<!ELEMENT UoF.List.Item - o EMPTY >

<!ATTLIST UoF.List.Item UoF.Name.Linkend CDATA #IMPLIED

-- this value should be equal to a Name attribute on a UoF.CL3 element -->

<!ELEMENT UoF.CL3 - - (#PCDATA) >

<!ATTLIST UoF.CL3 Name CDATA #REQUIRED >

A Units of Functionality sub-clause contains introductory text, followed by a list of the
names of the UoFs, followed by descriptions of each UoF. Since the introductory text is
�xed, the element representing it, UoF.SubC.Intro.Text8, can be omitted from the
AP-editing DTD. Since the list of UoF names can be generated by an application, the
UoFs.List and UoF.List.Item elements and their attributes can also be excluded from
the AP-editing DTD. The portion of the editing DTD corresponding to the AP-publishing
DTD fragment above is the following:

<!ELEMENT UoFs.SubC - - (UoF.CL3+) >

<!ELEMENT UoF.CL3 - - (#PCDATA) >

<!ATTLIST UoF.CL3 Name CDATA #REQUIRED >

3.2 Conversion of Legacy Data

Conversion of legacy data can be one of the most di�cult and challenging components in
an SGML environment. This is because most word processing and desktop publishing
systems are based on visual formatting rather than logical markup, and the few tools that
do support logical markup tend not to require authors to conform to a particular
document structure. It is desirable to automate conversion as much as possible,
particularly for large volumes of legacy data, but two problems often arise:

� Legacy documents in the same format with the same look and feel may have
di�erent internal representations. For example, two documents written using the

7It is not necessary for the reader to know what Units of Functionality are in order to follow this example.
Also, the actual declarations in the DTDs were simpli�ed for this example in order make it easier to follow.

8Its element declaration is not shown in the example because of space limitations.

8

same word processor might look the same even though one was created using styles
and the other was not.

� The legacy data may exist in multiple formats, requiring that a di�erent converter
be implemented for each format.

If all legacy documents were created using uniform styles, conversion could be fully
automated by writing programs to handle each document format. On the other hand, if
styles are not applied uniformly, automation becomes more di�cult.

When inconsistent use of styles in the legacy documents makes full automation impossible,
some combination of automation and manual tagging is required. Individuals performing
manual tagging should ideally have familiarity both with SGML and with the subject
matter in the legacy documents. If those tasked to do the manual tagging lack expertise in
either area, then the appropriate training needs to be provided.

3.2.1 Converting STEP Legacy Data

Converting legacy STEP AP and IR documents into SGML is a challenging endeavor.
Legacy AP and IR documents exist in LaTeX[LAMP] as well as in more than one version
of WordPerfect. There are also AP documents nearing completion that have been written
in Word. Furthermore, although style templates are available to STEP part editors for
some of these formats, some document authors modify the templates or lack training
needed to use them properly. As a result, automating legacy data conversion has been
di�cult and we have had to rely heavily on manual tagging. We have decided to
out-source the conversion of the remaining WordPerfect and Word STEP documents. We
hope to be able to use an auto-tagging tool developed in-house to partially automate the
LaTeX document conversion[WIL96A]. What we cannot automate, we will do in-house
manually or out-source.

3.3 Authoring Environment

Because an SGML authoring environment is markup-sensitive and not
structure-controlled (see Section 2), its functionality is only loosely governed by the
SGML standard. All that the standard requires is that the authoring environment
somehow enforce the document structure as speci�ed in the DTD. As a result, any of the
following alternatives can comprise an SGML authoring environment:

� A dedicated SGML authoring tool (designed for creating SGML documents and
nothing else);

9

� An SGML add-on, i.e., a text editor or word processor with added functionality to
support SGML authoring;

� A generic text editor or word processor and a stand-alone SGML parser.

All three options provide a satisfactory means of validating an SGML document.
However, they di�er in their editing features, ease of con�guration, and ease of use.

Dedicated SGML authoring tools, as well as some SGML add-ons, provide such useful
editing features as context-sensitive search and replace, traversal based on a document's
tree structure, convenient commands for inserting markup, and the ability to selectively
expand or collapse elements and entity references in the text editing window. However,
these features tend to steepen the learning curve for non-SGML experts, and most
�rst-time SGML document editors �nd these tools di�cult to use if they are not
customized for a particular DTD. Also, dedicated SGML authoring tools provide a lot of
overhead if one is making only minor changes to an existing SGML document.

An SGML add-on for a particular word processor or text editor is a particularly attractive
option for document authors who already use that word processor or text editor for other
tasks. While it might not have all of the SGML-speci�c features of a dedicated SGML
authoring tool, it is easier to learn how to use. Also, SGML add-ons for WYSIWYG
(\What You See Is What You Get") word processors permit users to see their document
with formatting while they are editing it, although this requires that the DTD author
supply a mapping from the DTD elements to word processor styles. A disadvantage of
SGML add-ons is they have only recent begun to appear in the marketplace, so their track
record is less proven than that of dedicated SGML authoring tools.

A generic text editor or word processor is probably easiest to use when cutting and
pasting from an existing SGML-tagged document because the SGML markup is already
provided in the existing document. This alternative is also ideal when the document
consists of mostly text and few tags, and little SGML understanding is required. The
main disadvantage, however, is that the user is not at all guided or constrained by
DTD-speci�ed document requirements while editing, and errors can easily and frequently
be introduced. Also, there is no support for facilitating SGML-speci�c tasks such as
inserting markup, setting attribute values, etc.

Depending on the granularity and complexity of the DTD, manually tagging an SGML
document corresponding to that DTD can be a very laborious and time-consuming task
using any type of editor. An SGML editor customized for a speci�c DTD, however, can be
used to alleviate some of the tedium in tagging SGML documents. A customized editing
application can be used to provide such capabilities as prompting the user for required
content or providing \pick-lists" from which the user can select otherwise long or
hard-to-type attribute values.

10

Generic text editors and word processors do not have any understanding of the SGML
encoding in the documents. Therefore, they cannot provide such DTD-speci�c behavior.
However, both dedicated SGML authoring tools and SGML add-on software are
SGML-aware (at varying levels) and therefore can be customized to enable DTD-speci�c
behavior by means of a scripting language or an application programmer interface (API).
Customizations are especially bene�cial when they are successful in hiding some of the
SGML details from the user or reducing the user's tagging e�ort.

3.3.1 SGML Authoring for STEP

The STEP SGML authoring environment requires tools which are robust enough to
handle large, complex DTDs while hiding as much of the DTD complexity as possible
from the user. Also, because most STEP document authors are novice SGML users, a
friendly, easy-to-use user interface which does not burden the user with excessive SGML
tags is preferable9. Finally, we want to give our users the freedom to use the software
tools of their choosing to produce STEP documents, as long as those tools produce valid
SGML with respect to the STEP DTDs.

Therefore, our approach is to give users complete freedom in choosing how they want to
produce their documents while, at the same time, making STEP-customized options
available to them. We encouraged selected vendors of dedicated SGML authoring tools to
distribute versions of their products hard-wired to our DTDs to the STEP community at
a low cost. One such vendor is willing to distribute a version of their SGML authoring
tool for STEP with user interface customizations we will supply. Also, since many STEP
authors already use word processors to edit their documents, we plan to provide mappings
from the STEP DTDs onto style templates for popular word processors. This way, users
can use word processor SGML add-ons without having to develop the required mappings
themselves.

3.4 Document Repository

The document repository is the place where SGML data is stored. Depending on an
application's requirements, the repository may be a computing platform's �le system, or it
may be a relational or object-oriented database. If the repository contains a large amount
of data, and if fast access is required, the repository should be indexed using the element
structure of the application's DTD. An SGML application's repository requirements
depend on whether it is a producer of SGML documents, a consumer of SGML
documents, or both. SGML document producers need to easily be able to store the

9Another reason for providing a user interface that is as straightforward as possible is that STEP docu-
ment authors are a geographically distributed group, making them expensive to train in person.

11

documents they create in the repository. SGML document consumers, on the other hand,
are more concerned with fast and e�cient access to information in the documents10.

Another issue worth considering when designing a repository for an SGML environment is
whether the repository will contain any non-SGML data. If so, then the repository's
search engine needs to be versatile enough to process SGML-structured as well as
unstructured, full text queries.

Yet another issue to consider in designing a repository is the programmer-level interface.
There should be a set of functions speci�c to the SGML environment for accessing the
repository, and these functions should be easy to invoke from the source code of any
SGML application components that use the repository. These functions form a necessary
layer between a repository's generic API and the applications.

3.4.1 The SGML Repository for STEP

Since the SGML environment for STEP supports the entire life cycle for STEP
documents, it is both an SGML document producer and an SGML document consumer.
The SGML environment's authoring and legacy data conversion application components
produce new SGML documentation. Its browsers and search interfaces facilitate the
\consumption" and reuse of this documentation. In order to satisfy the SGML
environment's producer-driven requirements, the repository should store data in its native
format, i.e. as ASCII �les containing SGML documents. In order to satisfy
consumer-driven requirements, the data repository needs to maintain indices for these �les
re
ecting the element structure de�ned in the DTDs. Also, the repository needs a search
engine whose performance scales up well enough so that access remains fast when there
are tens of thousands of pages worth of documentation indexed.

The SGML repository for STEP is contained in the Application Protocol Information
Base (APIB), an on-line repository under development at NIST for users and developers
of STEP. The APIB currently contains a subset of STEP IRs and APs. When it is
complete, the APIB will also contain all IRs, additional APs, other STEP documents
describing representation and implementation methods, and additional information useful
to the STEP community such as schedules, issue logs, and issue resolutions. The APIB's
contents are indexed for e�cient access using Pat [OTC], a commercial text retrieval
engine. Each document in the APIB is stored in its native format. Translation for viewing
or publishing purposes is done on demand, as will be discussed in Section 3.5. Other
documents will be represented as plain ASCII text, or in SGML using less complex
DTDs11. Pat uses the SGML markup in the APs and IRs to index their data. Thus users

10If SGML document producers need to maintain revision histories, then access is important for them too.
11We are considering using ISO's exchange DTD to represent the STEP documents describing represen-

tation and implementation methods.

12

can issue queries to the APIB referring to the SGML structures speci�ed for STEP.

Figure 3 illustrates the architecture of the SGML portion of the APIB. SGML databases
of STEP IRs and APs are indexed for use with the APIB's search engine. SGML
application components communicate with these databases through a Tcl[OUST] binding
that insulates the application components from Pat's internals. We chose Tcl as a
programming language because it is
exible, portable, easy to use, and several Tcl
extensions useful to the APIB had already been implemented. The Tcl binding has both
generic and STEP-speci�c components. The generic component contains a Tcl
extension[LUB95] for tokenizing and scanning output from Pat as well as Tcl commands
for opening and closing databases and issuing queries. The STEP-speci�c component
contains Tcl commands for performing queries speci�c to the STEP DTDs.

Database
IR

Database
AP

SGML Search Engine
...

Applications

Tcl Binding

Figure 3: Architecture for SGML portions of APIB.

3.5 User Interfaces for Browsing and Searching

An SGML environment with a large data repository should include a user interface for
accessing the repository's contents. The user interface may be a separate client
application. However, unless the users are a small group who are all using the same
computer system on a local area network, it is often more desirable to make the repository
accessible through the World Wide Web for the following reasons:

� A web interface eliminates the need for users to obtain and install client software
(other than a web browser).

� Using the web as a delivery medium eliminates the need for application developers
to build and maintain separate user interfaces for multiple computer platforms.

13

� Technologies such as the Common Gateway Interface (CGI) standard for interfacing
external applications with web servers[BLEE] and the Java[NIEM] programming
language provide the means to build sophisticated Internet applications that can be
accessed through a user's web browser.

Assuming that the web will provide a repository's user interface, the next issue is how to
display the repository's contents to the user. One possibility is to display the data as
HTML. All web browsers are capable of displaying HTML, and HTML meets the
presentation requirements for many applications. However, since the data's original
representation is SGML and not HTML, it must �rst be converted to HTML prior to
being displayed. Although it is pretty straightforward to translate from SGML to HTML
(see Section 3.6), HTML does a poor job displaying mathematical formulas, some foreign
languages, and data with very precise presentation requirements. Also, HTML supports
hyper-linking far less rich than the kinds of links that can be represented using the
Hypermedia Time-Based Structuring Language (HyTime)[HYTIME] standard. Therefore,
HTML is not always the best solution.

An alternative is to display the data as formatted SGML. This requires that the user have
a web browser that is capable of displaying SGML, or a separate SGML viewer client set
up as a helper application for the web browser. However, formatted SGML is a lot more
versatile than HTML and is not limited in what it can represent. If the SGML viewer
supports HyTime hyper-linking, then a user interface for browsing a repository could
capture data relationships that would be di�cult to represent using HTML alone.

3.5.1 Browsing and Searching STEP Documents

We have implemented a World Wide Web gateway using CGI for browsing STEP
documents in the APIB. We use HTML rather than SGML for displaying the APIB's
contents because HTML is adequate for most of our presentation requirements, and
because third party SGML viewers are not yet readily available for all computer systems
we need to support. CGI scripts generate HTML dynamically in response to requests for
web pages. The APIB gateway uses HTML forms to obtain input data from the user. The
input is then processed by the APIB gateway's CGI scripts12. The APIB gateway
provides APIB access services to STEP AP developers through their web browser
software, eliminating the need for AP developers to install APIB client software. It also
eliminates the need for NIST to build and maintain separate APIB user interfaces for
multiple computer platforms.

The APIB gateway provides an interface between a user's web browser and the APIB's

12World Wide Web gateways often use HTML forms in this way as a means of obtaining input for CGI
programs.

14

data access services. This interface consists of a collection of CGI scripts written in Tcl
implementing various data access services and an SGML-to-HTML translator for STEP as
shown in Figure 4. These scripts use a Tcl CGI library[LIBES] for reading input from
HTML forms and dynamically creating HTML. Each CGI script answers a particular type
of user request speci�c to STEP. The requests are issued by means of entering information
in a form and pressing a button to submit the request. The CGI script triggered by the
form issues a query to the APIB and, using the query result, generates a new HTML page
to display to the user. The new HTML page typically contains another form soliciting
user input. [LUB96] discusses the design and operation of the APIB gateway in detail.

Web
Browser

Web
Browser

APIB
CGI Scripts for
APIB Access

SGML-to-HTML
Translator

Client Side Server Side

Figure 4: Architecture of the APIB gateway.

The SGML-to-HTML translator is used to convert SGML-tagged data from the source
documents in the APIB into HTML so they can be displayed in a web browser. The
translation is only necessary for query results containing actual text from the APIB
documents. If the query result does not contain an actual piece of the document (for
example, the result could be a list of object names satisfying the query), then the CGI
scripts generate HTML output without use of the translator. The bidirectional arrow
between the CGI scripts and the APIB and the unidirectional arrows from the APIB to
the translator and from the translator to the CGI scripts in Figure 4 indicate this
conditional use of the translator. The implementation of the translator is discussed in
Section 3.6 and also in [LUB96].

3.6 Formatter for Publishing

SGML provides a means of representing the structures and relationships in documents.
However, �nal hard-copy or electronic publication usually requires additional formatting
information. Therefore, an application which converts documents tagged according to a
given DTD into a format for presentation is required. Two key choices in this area are:

15

� The translation mechanism to be used;

� The output format of the document.

A translation mechanism for converting SGML documents into a presentation format for
viewing or printing consists of:

� A mapping which speci�es the relationships between SGML constructs and
formatting information;

� The software tool which is used to generate the desired output by implementing
those relationships.

The mapping can be speci�ed using the Document Style Semantics and Speci�cation
Language (DSSSL)[DSSSL]. However, since at the time of this writing there is very little
software available supporting DSSSL, a more practical short term solution is to use an
application-speci�c mechanism for specifying the relationship between DTD constructs
and formatted output. While the obvious disadvantage of this mechanism is that a
di�erent mapping is required for each application, the advantage of this mechanism is that
it does exist now and works very e�ectively.

The software tool used to implement the mappings between DTD elements and format
can either be speci�c to a public or industry-standard DTD or it can be con�gurable for
use with any DTD. Using a DTD-speci�c SGML conversion tool is ideal when using the
DTD for which the conversion tool is created. In some cases, this can actually eliminate
the need to specify a mapping if the application developer uses the tool's default mapping.
However, if no conversion tool speci�c to the desired DTD is available, then a
DTD-general SGML conversion tool must be used. DTD-general conversion tools typically
follow the SGML processing model shown in Figure 2. The tool requires that an SGML
document be fed to a parser in order to obtain the ESIS, which in turn gets fed to the
tool. The tool also requires a set of translation rules specifying the mapping between
SGML constructs in the document and the output format.

A wide variety of output choices are available provided that the output format supports
the SGML environment's presentation requirements. However, some output formats are
easier to generate than others. For example, it is much easier to translate an SGML
document into HTML than it is to translate it into RTF because HTML's syntax is more
SGML-like than RTF. Also, output formats which support cross referencing, automatic
section numbering, and other publishing niceties are good choices when paper is the
delivery medium. Another consideration in selecting an output format is whether or not
application-speci�c style sheets or templates are available in that particular output
format. If such style sheets or templates are available, then much of the formatting work
is handled therein, and less work is required to implement the translation mechanism.

16

3.6.1 SGML Formatting for STEP

In the SGML publishing environment for STEP, both paper and electronic delivery are
supported. The translation mechanism for both is SGMLSpm[MEGG], a perl[VROM]
library for building structure-controlled SGML applications. SGMLSpm includes a
program that converts an SGML document's ESIS into an output format as speci�ed by a
collection of rules written in perl. We have written rules to translate STEP documents
from SGML to LaTeX for hard copy output and to HTML (as was mention in Section 3.5)
for electronic output.

The hard copy output of the SGML conversion tool is intended both for STEP AP
developers to generate for review as the document is being developed and for delivery to
ISO for �nal publication. Therefore, it is important to ensure that the publishing
environment fully supports the speci�c formatting requirements for STEP documents as
speci�ed by the documentation guidelines. Because the LaTeX styles in accordance with
STEP's documentation guidelines already exist[WIL96B], and because tools are readily
available to produce high quality output from LaTeX, LaTeX was selected as the output
format for SGML-tagged STEP documents. Also, e�orts have been made to coordinate
STEP LaTeX style sheet development with development of STEP DTDs. This, combined
with the LaTeX document preparation system's support for cross referencing, automatic
numbering, and generation of tables of contents, simpli�es the mapping process as well as
ensures that the resulting output is accurate and consistent.

Because electronically-delivered STEP documents are not subject to STEP's
documentation guidelines, the requirements for electronic publishing are less stringent
than for printing. Therefore, it was fairly straightforward to write the perl rules used in
the SGML-to-HTML translator discussed in Section 3.5.

4 Concluding Remarks

The SGML, HyTime, and DSSSL standards are evolving, and third party SGML software
tools are becoming more prevalent and powerful. As a result, new capabilities are
becoming available for SGML environments. We are particularly interested in the
following recent and ongoing developments:

� Architectural form processing support. Now that the SP[CLARK] SGML parser can
process architectural forms (as speci�ed in the HyTime standard), we are looking at
de�ning document architectures for STEP and redesigning our DTDs so that they
use these STEP document architectures. This should result in our DTDs being
easier to maintain in the future, and it may also enable us to build more e�cient

17

and robust applications using them.

� DSSSL. The DSSSL standard is now solidi�ed, and software tools supporting DSSSL
are starting to emerge. We therefore are considering rebuilding our SGML-to-LaTeX
and SGML-to-HTML translators using DSSSL. We also hope to be able to use
DSSSL in implementing the �lter to convert APs written using the AP-editing DTD
into documents conforming to the AP-publishing DTD. Using DSSSL would enable
us to separate our presentation requirements from our transformation speci�cations,
making it easier for us to support multiple output formats.

� Groves and property sets. When SGML authoring tools start supporting groves and
property sets as de�ned in the HyTime Technical Corrigendum (see Section 2), we
will be able to express some of our STEP-speci�c user interface customizations in
SGML. This will reduce the need for us to work with proprietary scripting languages
and APIs.

Although much work remains to be done, our SGML environment for STEP is already
having an impact on AP development. Ambiguities and inconsistencies in the STEP
documentation guidelines have been exposed through the e�ort of developing the STEP
DTDs. Since the STEP DTDs provide a complete and unambiguous speci�cation of AP
and IR document structure, AP and IR documents authored in SGML will be free of the
inconsistencies and documentation guidelines violations that plague the APs and IRs in
the STEP initial release. The APIB World Wide Web Gateway enables AP developers
and STEP implementors to easily access the existing body of information in STEP,
without having to laboriously search through individual standards documents. As we
continue adding new capabilities to our SGML environment, we will undoubtedly gain
additional insights regarding SGML application development.

Portions of our SGML environment for STEP are available to the public13 through the
\Application Protocol Development Environment" project page on the NIST
Manufacturing Systems Integration Division web server at http://www.nist.gov/msid/.

The authors thank this document's NIST reviewers | Mary Mitchell, Peter Wilson, and
Willie Rogers | for their insightful comments.

References

[BLEE] Tim Berners-Lee and Daniel Connolly, Hypertext Markup Language - 2.0,
Internet Engineering Task Force, HTML Working Group, RFC 1866,
November 1995.

13The STEP DTDs are available for download. The APIB gateway discussed in Section 3.5 is also available.
However, because the STEP documents in the APIB are copyrighted by ISO, access to these documents is
restricted. Requests for further information should be directed to the authors.

18

URL: ftp://ds.internic.net/rfc/rfc1866.txt

[CLARK] James Clark, SP SGML Parser, version 1.1.
URL: http://www.jclark.com

[DSSSL] International Organization for Standardization, Information
technology|Processing languages|Document Style Semantics and
Speci�cation Language (DSSSL), ISO/IEC DIS 10179, 1996.
URL: http://www.ornl.gov/sgml/wg8/wg8home.htm

[GOLD] Charles Goldfarb, The SGML Handbook, Oxford University Press, 1992.

[HYTIME] Fujitsu Open Systems Solutions and TechnoTeacher, Inc., HyTime Application
Development Guide, Version 1.2.4, February 1996.
URL: http://www.techno.com

[KOUZ] Richard T. Kouzes, James D. Meyers and William A. Wulf, Collaboratories:
Doing Science on the Internet, Computer, Vol. 29, No. 8, August 1996.
URL: http://www.wvu.edu/~research/

[LAMP] Leslie Lamport, LaTeX: A Document Preparation System, Addison-Wesley,
second edition, 1994.

[LIBES] Don Libes, Writing CGI Scripts in Tcl, Proceedings of Tcl/Tk Workshop 96,
Monterey, CA, July 10-13, 1996.
URL: http://www.nist.gov/msid

[LUB95] Joshua Lubell, Patparse, National Institute of Standards and Technology,
initial release (1995).
URL: http://www.nist.gov/sc4/tools/nist/patparse.tar

[LUB96] Joshua Lubell, The Application Protocol Information Base World Wide Web
Gateway, National Institute of Standards and Technology, NISTIR 5868, July
1996.
URL: http://www.nist.gov/msid

[MEGG] David Megginson, SGMLS.pm: A perl5 class library for use with the SGMLS
and NSGMLS parsers, University of Ottawa, version 1.03.
URL: ftp://aix1.uottawa.ca/pub/dmeggins/

[OTC] Open Text Corporation, System Integration Guide, Release 5.0, 1994.

[NIEM] Pat Niemeyer and Josh Peck, Exploring Java, O'Reilly, May 1996.

[OUST] John Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.

[PALMER] Mark Palmer and Mitchell Gilbert, Guidelines for the Development and
Approval of STEP Application Protocols, Version 1.2, ISO TC184/SC4
Technical Report, N433, April 5, 1996.

19

[PHIL94] Lisa Phillips and Joshua Lubell, An SGML Environment for STEP14, National
Institute of Standards and Technology, NISTIR 5515, November 1994.
URL: http://www.nist.gov/msid

[PHIL96] Lisa Phillips, STEP Document Type De�nitions: Design and Architecture,
National Institute of Standards and Technology, to appear as a NISTIR, 1996.
URL: http://www.nist.gov/msid

[STEP1] International Organization for Standardization, Industrial automation systems
and integration|Product data representation and exchange|Part 1: Overview
and fundamental principles, ISO 10303-1, 1994.

[TC] International Organization for Standardization, Hypermedia/Time-Based
Structuring Language \HyTime" Draft Corrigendum, ISO/IEC 10744
Technical Corrigendum 1, 1996.
URL: http://www.ornl.gov/sgml/wg8/wg8home.htm

[TEI] C.M. Sperberg-McQueen and Lou Burnard, Guidelines for Electronic Text
Encoding and Interchange, ALLC/ACH/ACL, May 1994.
URL: http://etext.virginia.edu/TEI.html

[WELL] Joan Wellington, Supplementary directives for the drafting and presentation of
ISO 10303, ISO TC184/SC4 Technical Report, N432, April 5, 1996.
URL: http://www.nist.gov/sc4/howto/methods/supp dir/

[WIL96A] Peter Wilson, LTX2X: A LaTeX to X Auto-tagger, National Institute of
Standards and Technology, to appear as a NISTIR, 1996.
URL: http://www.nist.gov/sc4/editing/latex/programs/ltx2x

[WIL96B] Peter Wilson, The LaTeX Package Files User Manual, National Institute of
Standards and Technology, to appear as a NISTIR, 1996.
URL: http://www.nist.gov/sc4/editing/latex/current

[VROM] Johan Vromans, Perl 5 Desktop Reference, O'Reilly and Associates, February
1996.

14Also appeared in SGML '94 Proceedings, Graphic Communications Association, Vienna VA, November
1994.

20

